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Abstract. We argue that isotropization and, consequently, thermalization of the system of gluons and
quarks produced in an ultrarelativistic heavy-ion collision does not follow from Feynman diagram analysis
to any order in the coupling constant. We conclude that the apparent thermalization of quarks and gluons,
leading to success of perfect fluid hydrodynamics in describing heavy-ion collisions at RHIC, can only be at-
tributed to the non-perturbative QCD effects not captured by Feynman diagrams. We proceed by modeling
these non-pertrubative thermalization effects using viscous hydrodynamics. We point out that matching
Color Glass Condensate inital conditions with viscous hydrodynamics leads to a continuous evolution of
all the components of the energy-momentum tensor and, unlike the case of ideal hydrodynamics, does not
give rise to a discontinuity in the longitudinal pressure. An important consequence of such a matching is
a relationship between the thermalization time and shear viscosity: we observe that small viscosity leads
to short thermalization time.

PACS. 24.85.4+p Quarks, gluons, and QCD in nuclei and nuclear processes — 25.75.-q Relativistic heavy-ion

collisions — 25.75.Nq Quark deconfinement, quark-gluon plasma production, and phase transitions

1 Introduction: isotropization versus free
streaming

The results presented here are mainly based on the work
done in [1,2], but also include new developments described
in sect. 4.

Similar to the original Bjorken hydrodynamics ap-
proach [3], let us consider a central high-energy collision of
two very large nuclei. For simplicity, here we will discuss
the case where the distribution of particles is indepen-
dent of space-time rapidity n = (1/2)In(x4/z_), where
ri = (t £ 2)/v/2. Since the nuclei are very large the
transverse coordinate dependence can also be neglected
for most physical quantities, leaving only the dependence
on the proper time 7 = /2zyx_. For this geometry, one
can show that the most general energy-momentum tensor
can be written as (at z = 0) [1]

e(fr) 0 0 O

o 0 7) 0 0

= Op(o)p(T) 0 | 1)
0 0 0 ps3(n)

where the z-axis is taken along the beam direction, and
x,y-axes are in the transverse direction. Applying the con-
servation of energy-momentum tensor condition

9, T =0 2)

# e-mail: yuri@mps.ohio-state.edu

to the energy-momentum tensor that gives eq. (1) at z =10
we obtain
de €+ Dps3
dr T

(3)

There are two interesting cases one can consider:

i) if p3 = 0 longitudinal pressure vanishes and, due to
eq. (3), we get
1
€~ -’ (4)
such that the total energy F ~ e¢7 = const. This case
is known as free streaming: the system expands freely
without loosing any energy.

ii) if ps = p the energy-momentum tensor in eq. (1) be-
comes isotropic. This is the case of ideal Bjorken hy-
drodynamics [3]. Equation (3) with p3 = p was derived
in [3]. If combined with the ideal gas equation of state,
€ = 3p, it gives )

€~ i (5)

or, for other equations of state,

1

—_ with
T1FA

€ ~

A>0. (6)
Equation (3) demonstrates that changes in the total
energy E ~ e7 (or, equivalently, deviations from e ~ 1/7

scaling) are due to work done by the longitudinal pres-
sure p3. The classical initial conditions in the Color Glass
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Condensate (CGC) approach [4] yield the free-streaming
final state with ps = 0. A thermalized quark-gluon plasma
(QGP) is characterized by non-zero ps, leading to the en-
ergy density scaling as shown in eq. (6). Therefore, below
we will understand isotropization, which is the necessary
condition for thermalization, as dynamical generation of
non-zero longitudinal pressure ps # 0, or, equivalently,
deviations from the scaling of eq. (4) leading to the scal-
ing of eq. (6).

2 Formal argument

An extensive search of the diagrams which would bring
in the desired deviations from the scaling of eq. (4) car-
ried out by the author did not yield any positive results:
while many diagrams have contributions to e scaling as
shown in eq. (6), such terms are always subleading addi-
tive corrections to the leading (at late times) terms scaling
as shown in eq. (4). In fact one can construct an argu-
ment [1] demonstrating that the leading contribution to
energy density from any-order diagrams scales as € ~ 1/7.
The argument is presented below.

We begin by considering a gluon field generated by
an arbitrary Feynman diagram [1], illustrated in fig. 1. In
0, A" = 0 covariant gauge the gluon field can be written as

d4k e—ik»w
_ . - a k
Z/ (2m)* k2 + iekg k), (7)

Al(x) =
where the function J;(k) denotes the rest of the diagram
in fig. 1 (the truncated part), which depends on the
momenta of other outgoing gluons as well. Indeed the
gluon field can be defined as a simple function only in the
classical case: the “field” in eq. (7) should be thought of
as a Feynman diagram in fig. 1 with one of the outgoing
gluon lines being off mass-shell, i.e., a generalization of
the classical field which we will need in calculating energy
density [1]. (The expression in eq. (7) can also be thought
of as an operator equation.)

Substituting eq. (7) into the expression for energy-
momentum tensor

1
T (PR L L))

averaging over the nuclear wave functions and employing
the symmetries of the collision of two identical nuclei, we
obtain the energy density due to the gluon field [1]:

_/d4]€d4k‘/ e—ik-x—ik/-x
T T@0F K2+ icko) (K2 + ickl)

2
><{1 [(i)m;—ﬂ fl(k%k'2,k-k’,kT>+...}, (9)
2 Ty

where fi(k% k"2, k - k', kr) is some unknown function (a
“form-factor”) and the ellipsis indicate addition of two
more similar terms with different “form-factors” fs and fs.

nucleus #1

nucleus #2

Fig. 1. Gluon “field” generated by an arbitrary-order diagram
(see text).

Rewriting each “form-factor” as
fi(B2 K2 kK kp) = ik =0,E% =0,k -k =0, kr)
+[fi (K K2 koK k) — fi(k* =0,k =0,k-k'=0,kr)]
(10)

and using the fact that the square of the truncated part
of the diagram gives a cross-section

we conclude that, keeping only the first term on the right-
hand side of eq. (10) for all “form-factors” in eq. (9) yields

(1)

k2=0

o I 2 dN 2 2 2
e~ 5 [ Pk g b {0 + o))
1 [, dN
~ L _ 12
P /d kd%dnd?b ke, (12)

where the last equality is valid for late proper times 7.
Since, as was shown in [1], each factor of k2, k'? or k - k'
gives a factor of 1/7, the terms in the square brackets of
eq. (10) give a subleading (compared to eq. (12)) contri-
bution to energy density at late times 7 and can be safely
neglected!. We have shown that any diagram and/or any
set of diagrams contributing to gluon production cross-
section lead to energy density scaling as in eq. (4), i.e.,
that isotropization and, consequently, thermalization do
not take place in perturbation theory analysis of the col-
lisions.

The main assumption of the argument presented
above is the existence of multiplicity of produced gluons
dN/d?k dy, which is the essential assumption of QCD per-
turbation theory. This is what makes our argument per-
turbative.

3 Physical argument

Now let us present a physical argument demonstrating the
origin of the power of 4/3 in eq. (5) and explaining why

1 We assume that fi’s are continuous functions of their ar-
guments.
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it is impossible to be achieved in perturbation theory [2].
Let us assume that thermalization does take place at some
time 7y,. If a gauge invariant time 74, exists, we can put
the QCD coupling constant g = 0 for all times 7 > 7,
without violating gauge invariance. Bjorken hydrodynam-
ics in the g = 0 limit is governed by the ideal gas equation
of state ¢ = 3p, which leads to the energy density scal-
ing as shown in eq. (5). (For small but non-zero g, eq. (5)
would get an o(g?) negative correction to 4/3: the expan-
sion in g would still be around the power of 4/3.) Due
to eq. (3), the scaling of eq. (5) in the g = 0 limit of
Bjorken hydrodynamics means that ps # 0 and the gas
of non-interacting particles is doing work in the longitu-
dinal direction! What causes such a behavior of the sys-
tem? The problem lies in the ideal gas equation of state,
€ = 3p, which assumes that the ideal gas is in contact
with some external thermal bath. Such external thermal
bath could be a background field or a box containing the
gas: the ideal gas of non-interacting particles stays ther-
mal through the interactions between the gas particles and
the thermal bath. This is the only interaction allowed in
the g — 0 limit and it is responsible for the work done
by the non-interacting gas. Since there is no such external
thermal bath in heavy-ion collisions, the scaling of eq. (5)
is impossible to be achieved at small coupling.

Without the external thermal bath the particles in the
gas would be just free streaming, giving the physically cor-
rect energy density scaling of eq. (4). Of course, at a fixed
time 7 hydro is not applicable in the g = 0 limit, since the
mean free path of the particles would exceed the longitu-
dinal size of the system. However, if thermalization does
happen, for any fixed arbitrary small g, if we wait long
enough hydrodynamics should become applicable, lead-
ing to the scaling arbitrary close to that of eq. (5) and
doing work in the longitudinal direction which would be
mostly due to contact with the non-existing external ther-
mal bath. Therefore, we arrive at a contradiction, demon-
strating that hydrodynamics is not achievable at small
coupling. At large coupling, non-perturbative effects may
mimic the external thermal bath, possibly leading to the
energy density scaling shown in eq. (6).

4 Matching color glass initial conditions and
viscous hydrodynamics

If thermalization does take place via some non-
perturbative mechanism, understanding its dynamics
would be extremely hard. Instead, let us ask a pragmatic
question: what is expected from a successful thermal-
ization scenario? Apart from giving us correct dynami-
cal mechanism for the generation of longitudinal pressure
and the onset of isotropization, one may expect a ther-
malization scenario to yield us an estimate of the time
when energy-momentum tensor would become symmet-
ric, T,,, = diag{e,p,p,p} at z = 0 (again we are consid-
ering a central collision of two heavy ions in the rapidity-
independent approximation for produced particles). At
this time ideal hydrodynamics would be initiated and it

could be used to describe the subsequent evolution of the
system. Unfortunately, as was argued in [5], ideal hydrody-
namics is probably unachievable in nature, since the shear
viscosity n never completely vanishes?. Therefore, one has
to use viscous hydrodynamics with the energy-momentum
tensor given by

T,uu = (€+p)uuuv —PYGuv

2
+77 (vp,uy + vyuu - 5 A/,LV vp up) ’ (13)

where w,, is the velocity profile, V,, = (g, —uy u,) 0¥ and
Ay = guw — Uy uy. In the boost-invariant case eq. (13)
leads to

e(7) 0 0 0
0 p(r)+212 0 0
ny 3T
=100 "pm+zzr o0 (14)
0 0 0 p(r)— 31

One can see that viscosity corrections increase transverse
pressure and decrease longitudinal pressure in the system.

Now, if we follow [5] and assume that ideal hydrody-
namics is unachievable, we can try to address once again
the question of what to expect from a thermalization sce-
nario. Our earlier answer would not work anymore: ther-
malization cannot give us a completely isotropic energy-
momentum tensor, since such a tensor is impossible due to
viscosity corrections. Therefore, thermalization dynamics
can only bring the system to a somewhat isotropic state
achieved at certain thermalization time, after which vis-
cous hydrodynamics takes over.

However, the advantage of viscous hydrodynamics
energy-momentum tensor in eq. (14) is that it can be
continuously mapped onto the energy-momentum ten-
sor of color glass initial conditions without including
any additional thermalization dynamics. In the rapidity-
independent case the energy-momentum tensor due to the
classical fields in the color glass is given by [4,1]

T = diag{€ (), p' (), (7), 0}. (15)
We mark the energy density and pressure in eq. (15) with
a prime to distinguish them from the appropriate compo-
nents of the energy-momentum tensor in eq. (14).

Indeed matching the energy-momentum tensors in
egs. (15) and (14) is a rather crude approximation, which,
by omitting thermalization dynamics, would only give us
a lower bound on thermalization time. Alternatively, one
can view viscous hydrodynamics (14) as a model for the
non-perturbative thermalization effects: then, matching
egs. (15) and (14) would generate a non-perturbative ther-
malization scenario.

Requiring that at some “thermalization” time 7y the
components of energy-momentum tensors in egs. (15)

2 Following the standard convention we will use 7 to denote
shear viscosity in this section, which should not be confused
with space-time rapidity 7 used in the previous sections.
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and (14) are equal yields the following set of equations®:

(16)

The energy density € and transverse pressure p’ of the
CGC initial conditions determine, through egs. (16), the
initial values of energy density, pressure and viscosity of
the QGP, along with the matching time 7y. Indeed, the
exact knowledge of QGP thermodynamics would, in prin-
ciple, allow one to express €, p and 7 as functions of the
system’s temperature T'. Then eqgs. (16) would have only
two unknowns —matching time 79 and the correspond-
ing temperature at the matching T}, and would be over-
constrained. However, in the case when T/ = 0 on both
sides of the matching, egs. (16) have only two independent

equations

(o) = €' (70),

p(ro) ~ 4 1Io),
and are not over-constrained anymore. The tracelessness
condition, T} = 0, is valid in CGC both at the classi-
cal level, and at the level of leading logarithmic small-z
evolution. On QGP side T} = 0 is valid at very high tem-
peratures, and also e = 3p appears to be a good approx-
imation for the equation of state in the strong-coupling
regime. We conclude that solution of egs. (17) in terms of
7o and Tp is likely to satisfy the third equation in (16) as
well.

It is impossible to solve egs. (17) without knowing the

exact dependence of € and p on temperature. Instead, we
will find an approximate solution by writing

(17)

2

—n
30

where n(g) is some function of QCD coupling constant
9(T), which, at high temperatures, corresponding to small
couplings, just counts the number of quark and gluon de-

grees of freedom. Following [5] we write for the shear vis-
cosity

e(T) =3p(T) = (9) 1% (18)

n=f(g* Ne) N2 T? (19)

with f(g? N.) some function of the coupling. For the color
glass energy density we write

! OF Qi

€ =Cg (20)

osT2m2’
where cg is some order 1 coefficient to be determined by
explicit calculations and @ is the saturation scale. Substi-
tuting eqgs. (18), (19) and (20) into egs. (17), and neglect-
ing, perhaps unreasonably, the dependence of the coupling
constant g(T") on the temperature 7', we obtain the match-
1/3
a:"? [£(g> No) N2JV* 120 (

ing time
1/3
Qunlg) ) e

3 Continuous matching conditions in eq. (16) also lead to
continuity of de/d7 due to eq. (3).

872

ce Cr

To ~
7T2

which is a good estimate of thermalization time being the
only relevant time scale.

Let us analyze the thermalization time from eq. (21).
First of all, while, as we argued in the previous sections,
perturbative thermalization is dynamically impossible, we
can still explore the small-coupling asymptotics of eq. (21)
to construct a lower bound on perturbative thermalization
time. To that end we note that at small values of the
coupling n(g) approaches a constant, while f(g? N,) ~
1/g*. Using this in eq. (21), and dropping all the constant
factors, gives

1
T2 =

773 5 0
aS S

(22)

which is precisely the lower bound advocated by Arnold
and Lenaghan in [6].

In general, using eq. (19) in eq. (21) to replace
f(g* N.) N? with n/T? and dropping the numerical fac-
tors we conclude that

1/3 473
a n
To X 0. (T3> . (23)

This is the central result of this section. It appears that
the matching procedure between the CGC initial condi-
tions and viscous hydrodynamics leads to dependence of
thermalization time on shear viscosity. Moreover, the de-
pendence shown in eq. (23) implies that lower wviscosity
leads to shorter equilibration time! This conclusion agrees
well with the fact that hydrodynamic simulations demand
small shear viscosity and early thermalization time to de-
scribe RHIC data. It appears that, if our matching proce-
dure captures correctly at least some features of the actual
non-perturbative thermalization dynamics, short thermal-
ization time and small viscosity of the quark-gluon plasma
may be related.

Finally, assuming that 't Hooft coupling >N, is large
at RHIC, one can use the result of [5] that f(g% N.) = 7/8
in the strong-coupling limit (indeed, of ' = 4 SYM the-
ory), to estimate the thermalization time 7y using eq. (21).
Using a; = 0.3, cg = 1, Qs = 1.4GeV for central
RHIC collisions, and n(g) = 47.5 for three flavors yields
To = 0.5 fm, in a very good agreement with thermalization
time required by hydrodynamic simulations at RHIC.
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